

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Área Anardi 5, E-20730 Azpeitia Gipuzkoa-Spain Tel: +34 946 430 850 Lab_services@tecnalia.com www.tecnalia.com

European Technical Assessment

ETA 24/1151 of 29/01/2025

General Part

Technical Assessment Body issuing the ETA:	TECNALIA RESEARCH & INNOVATION
Trade name of the construction product	CONR-E07
Product family to which the construction product belongs	PAC 34: BUILDING KITS, UNITS, AND PREFABRICATED ELEMENTS.
Manufacturer	GAVAZZI TESSUTI TECNICI SPA SU Via Gavazzi, 3 23801 Calolziocorte LC, Italy www.gavazzispa.it
Manufacturing plant	Plant 1
This European Technical Assessment contains	15 pages including three Annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 340392-00-0104 CRM (Composite Reinforced Mortar) systems for strengthening concrete and masonry structures.

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body – Technical Research & Innovation. Any partial reproduction has to be identified as such.

Table of contents

Technical description of the product	. 3
Specification of the intended use in accordance with European Assessment Document EAD 340392-00-0104 (EAD hereinafter)	4
3. Performance of the product and references to the methods used for its assessment	t 5
3.1 Mechanical resistance and stability (BWR 1)	. 5
3.1.1. GFRP connector (Table 2.4 of EAD)	. 5
4. Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base	
5. Technical details necessary for the implementation of the AVCP system, as provide for in EAD	
ANNEX A: MATERIAL PROPERTIES	.7
ANNEX B: SPECIFICATION OF INTENDED USE	.8
ANNEX C: MECHANICAL PROPERTIES	9

Specific parts

1. Technical description of the product

The CRM (Composite Reinforced Mortar) systema are composed of different components, namely:

- FRP (Fibre Reinforced Polymer) mesh (preformed);
- FRP mesh corner elements (preformed);
- FRP connectors (preformed).

This ETA refers to GFRP connector CONR-E07, as single product that is a component of a CRM systems for strengthening concrete and masonry structures:

• CONR-E07: GFRP L connector 100-1000 x 100 Ø 7 mm (ECR glass fibres impregnated with vinylester resin).

The connector's geometrical and physical properties are reported in Annex A

The connection kit CONR-E07 comprises the ECR glass fibres impregnated with vinylester resin. There are two alternative options for the bonding agent to be used for anchoring the FRP connector to the substrate: BOSSONG BCR V PLUS and FERRI REPIKIT VE40 SEISMIC. In the case of BOSSONG BCR V PLUS resin, it is also suitable for overlapping connectors.

The chemical anchor BOSSONG BCR V PLUS is a styrene-free bi-component vinylestere resin compliant with EAD 330499-02-0601 and EAD 330087-01-0601. Essential characteristics of BOSSONG BCR V PLUS are reported in ETA 09/0140 (issued on the basis of EAD 330499-02-0601) and in ETA-09/0246 (issued on the basis of EAD 330087-01-0601).

The chemical anchor FERRI REPIKIT VE40 SEISMIC is a styrene-free bi-component vinylestere resin compliant with EAD 330499-01-0601. Essential characteristics of REPIKIT VE40 SEISMIC are reported in ETA 23/0081 (issued on the basis of EAD 330499-01-0601).

2. Specification of the intended use in accordance with European Assessment Document EAD 340392-00-0104 (EAD hereinafter)

The GFRP connectors (of the CRM system) have been designed to be used with resin for securing the mesh, in highly specialized applications for the structural reinforcement of existing and new masonry and concrete elements. The GRFP connectors are used, as a part of a CRM system, for reinforcement of structural elements subject to static, quasi-static, seismic/dynamic loading, also in environments subject to critical exposure conditions.

Concerning product packaging, transport and storage it is the responsibility of the manufacturer to undertake the appropriate measures and to advise his clients on the transport and storage, as he considers necessary in order to reach the declared performances.

The information about installation is provided with the technical documentation from the manufacturer and it is assumed that the product will be installed according to it or (in absence of such instructions) according to the usual practice of the building professionals.

The specifications and conditions given by the manufacturer are summarized in Annex B.

The performances assessed in this European Technical Assessment, according to the applicable EAD, are based on an assumed intended working life of at least 50 years, provided that the conditions for the installation, packaging, transport, storage, installation as well as appropriate use, maintenance and repair are met. The indications given on the working life cannot be interpreted as a guarantee given by the manufacturer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

The tests for performance assessment were carried out in compliance with EAD 340392-00-0104 according to the test methods reported herein, as well for what concerns sampling, conditioning and testing provisions.

The numbering (#) in the following tables corresponds to the numbering of Table 2.4 of EAD 340392-00-0104.

3.1 Mechanical resistance and stability (BWR 1)

3.1.1. GFRP connector (Table 2.4 of EAD)

#	Essential characteristic	Performance
1	Tensile strength	
2	Ultimate strain	Annex C, Section C1, Table 2
3	Young's Modulus	
4	Pull-out from reference substrates	Annex C, Section C2, Table 4 and Table 5
5	Lap-tensile strength	Annex C, Section C1, Table 3
6	Freezing and thawing resistance	Annex C, Section C3, Table 6 and Table 7
7	Water resistance	Annex C, Section C3, Table 8 and Table 9
8	Saltwater resistance	Annex C, Section C3, Table 10 and Table 11
9	Alkali resistance	Annex C, Section C3, Table 12 and Table 13
10	Glass Transition Temperature	Annex C, Section C4, Table 14

4. Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 340392-00-0104, the applicable European legal act is: Decision 1999/469/EC.

The AVCP system to be applied is: 2+.

5. Technical details necessary for the implementation of the AVCP system, as provided for in EAD

Technical details necessary for the implementation of the Assessment and Verification of Constancy of Performance (AVCP) system are laid down in the control plan deposited at Tecnalia Research & Innovation.

The Control Plan is a confidential part of the ETA and is only handed over to the notified body involved in the assessment and verification of constancy of performance.

Issued in Azpeitia, on 29/01/2025

Miguel Mateos

Innovation and Conformity Assessment Point Tecnalia Research & Innovation

ANNEX A: MATERIAL PROPERTIES

Table 1: GFRP "L" CONNECTOR PROPERTIES

Connector reference		GFRP L Connectors 100-1000 x 100 Ø 7mm
Appearance		
Geometrical and phys	ical characteri	stics
	Unit	Value
Long side length	mm	100 - 1000
Short side length	mm	100
Nominal diameter	mm	7
Nominal cross sectional area	mm²	38
Weight	g/m	75
Fibre content by Weight (<i>mean value</i>)	%	75
Colour	-	White, translucent
Packaging	-	Box of 100 connectors
Chemical and physica	I characteristi	cs
Fibre properties		
Fibre type	-	ECR glass roving
Fibre density	g/cm ³	2.6
Yarn linear density	tex	56000
Resin properties		
Resin type	-	Thermosetting resin
Resin density (hardened, polymerized)	g/cm³	1.2
Resin glass transition temperature	° C	115

ANNEX B: SPECIFICATION OF INTENDED USE

B.1. STORAGE CONDITIONS

Store in a covered, dry place, protected from rain and direct sunlight. Exposure to dust, grease, oil, and any other material that could reduce the adhesion between the connector and the mortar should be avoided. Particular care should be taken during transport, handling, and storage to prevent breakage.

B.2. INSTALLATION CONDITIONS

The application of the connectors should be carried out at temperatures ranging from -10°C to 60°C.

B.3. INSTALLATION INSTRUCTIONS

For CRM application on only one side of the masonry, drill 12 mm diameter holes to a depth of at least 2/3 of the masonry thickness, with a number of 4 to 6 holes per square meter. After cleaning the holes with a metal brush and compressed air, insert the BCR 400 V PLUS chemical anchor, saturating the entire length of the perforation, and proceed with the insertion of the CONR-E07 connectors, applying a slight rotation around their axis until the short side adheres to the mesh.

For CRM application on both sides of the masonry, drill holes, at a rate of 4 to 6 per square meter, which must be pass-through with a diameter of 12 mm and a 24 mm diameter countersink for the overlap of the two connectors (which must be 10 cm). After cleaning the holes with a metal brush and compressed air, insert the long connector from the side of the wall where the hole has not been enlarged. Then proceed with the injection of the BCR 400 V PLUS chemical anchor into the enlarged portion of the hole and insert the short connector, applying a slight rotation around its axis until the short side adheres to the mesh.

ANNEX C: MECHANICAL PROPERTIES

C1: GFRP CONNECTORS - MECHANICAL PROPERTIES

Table 2: Mechanical properties of the GFRP connectors

Product	Tensile Strength $\sigma_{u,con}$ (MPa)		Tensile Strain ε _{u,con} (%)		Modulus of elasticity E _{con} (GPa)	
1104401	Average	Characteristic value	Average	Characteristic value	Average	Characteristic value
GFRP L connector Φ 7 mm	854	662	2.77	1.25	47.2	32.9

Table 3: Lap tensile test results for GFRP connectors

Product		d at failure Fc (kN)	Lap-tensile strength σ _{lap} (MPa)	
	Average	Characteristic value	Average	Characteristic value
GFRP L connector Φ 7 mm	27.58	23.12	726	608

The used overlap length I_{lap} was 110 mm.

C2: GFRP CONNECTORS - PULL-OUT FROM REFERENCE SUBSTRATES

Table 4: Pull-out from reference substrates

Product	Substrate	Chemical anchor	Anchorage L _{anc} (mm)	Pull-out load P _{anc} (kN)	Failure mode	
	Clay	BOSSONG BCR 400 V-PLUS	160	17.85	2+3+4	
	Natural stone			19.13	2	
GFRP L connector	Tuff			8.58	2	
Φ 7 mm	Clay	FERRI REPIKIT	REPIKIT 160		12.9	1+2
	Natural stone			160	14.95	1+2
	Tuff	VE40 SEISMIC		7.85	2	

Failure mode:

- 1. failure due to sliding of the connector
- 2. failure at the anchoring-substrate interface
- 3. failure of the substrate and/or substrate cone failure
- 4. failure of the connector

Table 5: Properties of substrates

Substrate	Compressive strength of material f₀ (MPa)	
Clay	20.8	
Tuff	4.1	
Natural stone	120.0	

C3: GFRP CONNECTORS - ENVIRONMENTAL DURABILITY

Freeze-thaw exposure conditions:

All samples were conditioned in a humidity chamber for a week, at a relative humidity >90% and at a temperature of 38±2°C; they were then subjected to 20 freeze-thaw cycles. Each cycle consisted of at least 4 hours at -18±1 °C, followed by 12 hours in a humidity chamber (>90% relative humidity, 38±2°C).

Table 6: Resistance of GFRP connector after freeze-thaw exposure

Product	Tensile Strength $\sigma_{u,FT}$ (MPa)	Tensile Stress ε _{u,FT} (%)	Modulus of elasticity E _{FT} (GPa)
	Average	Average	Average
GFRP L connector Φ 7 mm	823	2.6	46.71

Table 7: Freeze-thaw resistance – Retained tensile properties

Product	Property	Retained
	Tensile Strength	96.4%
GFRP L connector Φ 7 mm	Modulus of elasticity	99%

Water exposure conditions:

All samples were conditioned according to Section 2.2.2.4 of EAD 340210-00-0104 for 1000 hours at a temperature of $38\pm2^{\circ}$ C and relative humidity > 90%.

Table 8: Resistance of GFRP connector after water exposure

Product	Exposure time	Tensile Strength σ _{u,w} (MPa) Average	Tensile Stress ε _{u,w} (%) Average	Modulus of elasticity E _w (GPa) Average
GFRP L connector Φ 7 mm	1000h	840	2.35	46.78

Table 9: Water resistance – Retained tensile properties

Product	Property	Exposure time	Retained
0555	Tensile Strength	1000h	98.3%
GFRP L connector Φ 7 mm	Modulus of elasticity	1000h	99.1%

Saltwater exposure conditions:

All samples were conditioned by immerging specimens in saltwater (solution of 245 g NaCl and 40.94 g Na₂SO₄ for 10 l of distilled water) for 1000 hours at a temperature of $23\pm2^{\circ}$ C.

Table 10: Resistance of GFRP connector after saltwater exposure

Product	Exposure time	Tensile Strength σ _{u,sw} (MPa) Average	Tensile Stress ε _{u,sw} (%) Average	Modulus of elasticity E _{sw} (GPa) Average
GFRP L connector	1000h	849	2.21	50.20

Table 11: Saltwater resistance – Retained tensile properties

Product	Property	Exposure time	Retained
	Tensile Strength	1000h	99.4%
GFRP L connector Φ 7 mm	Modulus of elasticity	1000h	106.4%

Alkali exposure conditions:

All samples were conditioned by immerging specimens in an alkaline solution (pH=12.5) for 1000 hours at a temperature of 23±2°C.

Table 12: Resistance of GFRP connector after alkali exposure

Product	Exposure time	Tensile Strength σ _{u,alk} (MPa) Average	Tensile Stress ε _{u,alk} (%) Average	Modulus of elasticity E _{alk} (GPa) Average
GFRP L connector Φ 7 mm	1000h	911	2.41	48.8

Table 13: Alkali resistance - Retained tensile properties

Product	Property	Exposure time	Retained
	Tensile Strength	1000h	106.7%
GFRP L connector Φ 7 mm	Modulus of elasticity	1000h	103.4%

C4: GFRP CONNECTORS - GLASS TRANSITION TEMPERATURE

Table 14: Glass transition temperature of GFRP connectors

Product	Tg (minimum)
GFRP L connector Φ 7 mm	60,81°C